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A B S T R A C T   

Although genome-wide association studies have identified multiple Alzheimer’s disease (AD)-associated loci by 
selecting the main effects of individual single-nucleotide polymorphisms (SNPs), the interpretation of genetic 
variance in AD is limited. Based on the linear regression method, we performed genome-wide SNP-SNP inter-
action on cerebrospinal fluid Aβ42 to identify potential genetic epistasis implicated in AD, with age, gender, and 
diagnosis as covariates. A GPU-based method was used to address the computational challenges posed by the 
analysis of epistasis. We found 368 SNP pairs to be statistically significant, and highly significant SNP-SNP in-
teractions were identified between the marginal main effects of SNP pairs, which explained a relatively high 
variance at the Aβ42 level. Our results replicated 100 previously reported AD-related genes and 5 gene-gene 
interaction pairs of the protein-protein interaction network. Our bioinformatics analyses provided preliminary 
evidence that the 5-overlapping gene-gene interaction pairs play critical roles in inducing synaptic loss and 
dysfunction, thereby leading to memory decline and cognitive impairment in AD-affected brains.   

1. Introduction 

Alzheimer’s disease (AD) is a devastating neurodegenerative disor-
der with high prevalence, which contributes to a substantial public 
health problem (Abdullah et al., 2022; The Texas Alzheimer Research 
and Care Consortium et al., 2012). Worldwide estimates of prevalence 
vary, with an estimate of 35–50 million individuals worldwide afflicted 
with AD or other dementia, which is expected to rise to 132 million by 
2050 (Hassan and Kerman, 2019; Meyers et al., 2022; Ridge et al., 
2013). Therefore, the urgency of the global challenge of AD has led to 
increased efforts over the past decade to better understand the AD 
progression. Although tremendous progress has been made in under-
standing the pathogenesis of AD which is influenced by genetic factors, 
the genetic mechanisms of AD are still unclear (Sims et al., 2020; The 
Texas Alzheimer Research and Care Consortium et al., 2012; Wang et al., 
2021). Early diagnosis of AD prior to the development of significant 
clinical symptoms remains a top priority of research (Bondi et al., 2008). 

Over the past decades, traditional genome-wide association studies 
(GWAS) have identified dozens of AD-associated loci by selecting the 
main effects of individual single-nucleotide polymorphisms (SNPs), yet 
all these are accountable for only a fraction of the estimated heritability, 
suggesting that a large portion of the genetic components of AD remain 
unexplained (Hu et al., 2020; Lu et al., 2018; Miron et al., 2018; The 
Texas Alzheimer Research and Care Consortium et al., 2012; Vance 
et al., 2020). Therefore, researchers have conducted studies on the ge-
netics of AD using multiple methods and databases in recent years, and 
their findings are a step forward in identifying the genetic factors that 
contribute to AD risk. For example, although additive main effects of 
significant SNPs are considered in subsequent large-scale GWAS with 
the recent explosion in high-throughput genotyping technology, these 
results were still challenged for “missing heritability” (Jansen et al., 
2019). 

Epistasis is the interaction of genetic variation at 2 or more loci 
during the expression of a single phenotype, in which the effects of a 
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given gene on a biological trait are masked or enhanced by one or other 
genes (Mackay, 2014; Moore, 2005). This type of interaction plays a 
critical role in explaining the missing heritability of complex diseases, 
and many of the unexplained genetic factors affecting AD etiology may 
be epistatic (Abd El Hamid et al., 2022; Cavalcante et al., 2022; Chen 
et al., 2021). Therefore, going beyond single-marker analysis is neces-
sary to look for epistatic relationships that might contribute to 
explaining the “missing heritability” of AD (Hohman et al., 2013). 
Notably, current studies on genome-wide SNP-SNP interactions in AD 
pathology are scanty and typically focus on SNPs that have significant 
individual effects. However, considering the uncertainty of that kind of 
interaction, we cannot disregard the possibility of significant SNP-SNP 
interaction between SNPs with marginal main effect (Hibar et al., 
2015). Therefore, to solve the issue of missing some significant SNP-SNP 
interactions due to ignoring insignificant single SNPs, detecting 
SNP-SNP interaction across the whole genome is necessary. Overall, 
detecting genome-wide SNP-SNP interaction will be conducive to novel 
signal mining, which could partially explain the “missing heritability” of 
AD (Li et al., 2015). 

Owing to the ultra-high dimension of SNP datasets, detecting SNP- 
SNP interactions across the whole genome is a computationally expen-
sive challenge. To address this issue, a total of 105 methods to detect 
epistasis have been published between 2010 and 2020 by Web of Sci-
ence (Abd El Hamid et al., 2023; Russ et al., 2022; Wang et al., 2023). 
The methods have been classified into 3 types: exhaustive search 
methods, data mining approaches, and swarm intelligence methods, and 
most of them have been designed for case-control tasks, with few on 
quantitative trait (QT). Moreover, these methods mostly choose to 
refrain from the brute force search in the SNP-SNP interaction space and 
try to reduce computational burden using dimensionality reduction 
screening and priori knowledge. However, using more subjective priori 
knowledge or random factors for dimension reduction search will lead to 
signal loss because the risk of epistatic interaction is unknown. 

Compared to discrete case-control status, continuous QT has higher 
statistical power to better track pathophysiological processes in AD and 
could contribute to detecting potential risk variants related to QT at the 
same time (Li et al., 2017). Pathologically, AD is characterized by the 
existence of extracellular senile plaques, intracellular neurofibrillary 
tangles (NFTs), and the loss of synapses and neurons, resulting in global 
cognitive decline and eventually dementia (Congdon and Sigurdsson, 
2018). As a 39–43 residue amphipathic peptide, the amyloid β-peptide 
(Aβ) is the major proteinaceous component of the extracellular senile 
plaque (Quon et al., 1991). The major Aβ species found in vivo are 
Aβ1–40 and Aβ1–42, which are composed of 40 and 42 residues, respec-
tively. By contrast, Aβ1–42 has 2 additional hydrophobic residues, Ile41 
and Ala42, yet it shows remarkably faster aggregation and greater 
neurotoxicity than Aβ1–40 (Nguyen et al., 2016; Zhang et al., 2002). 
Imprecise cleavage of the amyloid precursor protein substrate by 
γ-secretase affects the relative amounts of 2 main Aβ fragments: 
amyloid-β42 (Aβ42) and amyloid-β40 (Aβ40). In the Alzheimer’s disease 
neuroimaging initiative (ADNI) clinical dataset, there are only 3 cere-
brospinal fluid (CSF) biomarkers available: tau, Aβ42, and P-tau181P, 
while Aβ40 is not included in the dataset. As one of the 3 core and pre-
dictive CSF biomarkers, Aβ42 has been included in the diagnostic criteria 
of AD and is playing an increasing and important role in predicting the 
progression from a prodromal stage of AD to AD (Law et al., 2018; Li 
et al., 2018; Marchegiani et al., 2019). In recent years, the utilization of 
Aβ42 on AD has produced many achievements. For example, distinct 
regional patterns of Aβ burden are valuable biomarkers for assessing the 
risk of disease progression in cognitively normal and mild cognitive 
impairment (Pfeil et al., 2021). Intervention before Aβ reaches patho-
logical levels is an obvious benefit (Elman et al., 2020). rs9357347 re-
duces the risk of AD by modulating Aβ pathology and neuronal 
degeneration (Tian et al., 2019). Aβ42 is highly correlated with other 
biomarkers and might help in reducing the risk of early mild cognitive 
impairment or late mild cognitive impairment in amyloid-negative 

patients (He et al., 2021). Furthermore, studies using brain-derived 
soluble Aβ oligomers in AD have suggested that principally small and 
diffusible oligomers can disrupt synaptic plasticity (Li and Selkoe, 
2020). Soluble Aβ oligomers disrupt synaptic function and prevent the 
formation of soluble Aβ oligomers much more than do fibrillar amyloid 
plaque cores or Aβ monomers, which could be a novel therapeutic 
avenue for AD (Li et al., 2018). As aforementioned, mining more po-
tential loci by Aβ42, which are implicated in AD without ignoring the 
factor of underlying genetic interaction across the whole genome, is 
urgently needed. 

In our study, we performed a genome-wide epistasis detection study 
in the ADNI cohort and bioinformatics analyses for the results inter-
preting to discover potential genetic epistasis implicated in AD. CSF Aβ42 
was used as a QT to advance statistical power and biological 
interpretation. 

2. Materials and methods 

2.1. Participants 

This study involved 1178 individuals from the ADNI database, which 
included 3 stages: ADNI 1, ADNI GO, and ADNI 2. A total of 6,187,414 
SNPs from all these 1178 individuals participated in the subsequent 
quality control (QC). For this study, stringent QC was performed on 
participants using PLINK v.1.9 software. SNPs were selected from the 
genotypic data based on certain and clear criteria. We first selected SNPs 
that were distributed on chromosomes 1–22. The next requirement for 
SNPs and participants concerned the minimum call rate: the minimum 
call rate ≥95% were selected. The minor allele frequency should no 
smaller than 5%. The Hardy-Weinberg equilibrium test p-value should 
no smaller than 10− 6. Then, a total of 563,980 SNPs from 1079 partic-
ipants passed QC. The CSF Aβ42 phenotype was used in this study. The 
presence of Aβ plaques and NFTs has been regarded as the main path-
ological hallmark of AD (Armstrong, 2009). Related studies have shown 
that Aβ42, P-tau, and T-tau are key biomarkers of CSF for pathophysi-
ology in AD. Aβ42 has been widely studied and has important implica-
tions for studying the association between genotype and AD. QC of the 
CSF Aβ42 process was based on 2 principles: baseline consistency and 
normal distribution. Among the remaining 1079 participants, only 843 
participants had both genotype data and phenotype (CSF Aβ42) after QC. 
These participants (N = 843) included 199 cognitive normal cognitions, 
85 significant memory impairments, 239 early mild cognitive impair-
ments, 207 late mild cognitive impairments, and 113 AD participants. 
After QC, 843 valid Aβ42 of CSF participants and 563,980 SNPs qualified 
for subsequent genome-wide SNP-SNP interaction analyses. 

2.2. Model of SNP-SNP interaction detection 

SNPs are high-density bi-allelic markers with allele A and a, where a 
lowercase letter denotes the minor allele, and an uppercase letter de-
notes the major allele. Each SNP thus has only 3 genotypes: 2 homo-
zygous genotypes (AA and aa) and 1 heterozygous genotype (Aa). 
Therefore, we detected the SNP-SNP interaction by including each SNP 
coded as (0,1,2) for (homozygote common allele, heterozygote, homo-
zygote rare allele), respectively. 

In this study, we performed a genome-wide SNP-SNP interaction 
detection using a linear regression framework. We included age, gender, 
and diagnosis (dx) as covariate terms in the linear regression models for 
Aβ42, to control for any factors outside of genetics that may influence 
AD. The model of additive main effect of SNP1 and SNP2 is defined as: 

Additive model: 

f = α + β1 × SNP1 + β2 × SNP2 + β3 × age + β4 × gender + β5 × dx (1) 

SNP × SNP model： 
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f = α + β1 × SNP1 + β2 × SNP2 + β3 × age + β4 × gender + β5 × dx + β6

× ISNP1×SNP2

(2) 

where α, β1, β2, β3, β4, β5, and β6 are regression coefficients. The 
SNP × SNP model consisted of the same SNP and covariate terms as the 
additive model, while with an additional multiplicative interaction term 
for the SNP × SNP model. To attack the intensive computational burden 
caused by the exponential growth of the search space in SNP-SNP 
interaction detection, a multi-GPU-based method was used for parallel 
computing (Zhang et al., 2022). After solving the models, the p-value of 
the interaction effects is given by the F-test statistic, which can be 
calculated as: 

p − value = P(F > Fsta) = 1 − Fn(Fsta, df1, df2) (3) 

where Fn is the probability density function of the beta distribution, 
Fsta is the F-test statistic, df1 is the freedom degree of the interaction 
term, and df2 is the freedom degree of the independent variable in the 
model. 

2.3. Statistical analyses 

A linear regression model was used to evaluate the effects of genome- 
wide SNP-SNP interactions. First, the main genetic effect was added, 
followed by the addition of genetic interaction term to determine the 
variance associated with the interaction term alone. Epistatic in-
teractions with Aβ42 as QT were detected, while 3 factors, including age, 
gender, and diagnosis, were included as covariates in the linear 
regression analysis. The epistasis interaction detection adds interaction 
term to the additive effects of 2 SNPs and calculates the p-value of the 
interaction factors. Approximately 159 million unique SNP pairs were 
detected in this epistasis interaction work, and 318 billion regressions 
were calculated. 

Functional enrichment was analyzed using the Enrichr online tool to 
reveal biological implications at the gene level. Enrichr is a compre-
hensive gene set enrichment analysis web server for biological discov-
eries that enables querying hundreds of thousands of annotated gene 
sets. The Enrichr platform is a comprehensive online tool for gene 
enrichment analysis that contains many genome annotation libraries 
that can be used for analysis and download, such as transcription, 
pathways, ontologies, diseases/drugs, cell types. The output results of 
Enrichr database include the result tables and results of multiple visu-
alizations, such as bar charts, grid maps, network graphs, and cluster 
heatmaps, which can be used for presentation (Kuleshov et al., 2016; Xie 
et al., 2021). In this study, PhenGenI (Al-Shammari et al., 2022) and 
DisGeNET (Piñero et al., 2019) databases from the diseases/drugs li-
braries of the Enrichr tool were used for functional and pathway 
enrichment analyses. In PhenGenI enrichment analysis and DisGeNET 
enrichment analysis, the top 10 significant pathway enrichment was 
taken as the selection criterion. For statistical importance of the 
enrichment results, the upper threshold for the adjusted p-value was set 
at 0.05 (Islam et al., 2022). 

To further investigate the biological functions and its biological 
implications of the results, a protein-protein interaction (PPI) network 
was constructed using the STRING tool (https://string-db.org/, accessed 
on October 20, 2022). Nodes and edges in the PPI network represent the 
genes (proteins) and the interactions between 2 genes, respectively. By 
determining the correlation between genes through the edges between 
nodes, we understand the relationship between genes and analysis po-
tential genetic epistasis implicated in AD. STRING is a database on PPI, 
covering most species and containing the highest information on inter-
action. The analysis of PPI plays a critical role in predicting genotype- 
phenotype associations in complex diseases. PPI networks are useful 
resources for identifying protein interactions and efficiently mapping all 
the interactions of a given organism’s proteome gathered from the 

literature through systematic mining (Safari-Alighiarloo et al., 2014). 
Moreover, the visualization of gene-gene interaction pairs was gener-
ated in the form of chord diagram using the online tool Bioladder (https: 
//www.bioladder.cn/, accessed on December 18, 2022). In addition to 
manual search, we also used PubMed and Google Scholar to search for 
articles showing any interesting relationships between our identified 
gene-gene interaction pairs that overlap with the PPI network to AD. 

3. Results 

3.1. SNP-SNP interaction results 

In this study, we analyzed genome-wide SNP-SNP interaction on the 
Aβ42 intermediate phenotype using a GPU-based linear regression model 
with age, gender, and diagnosis as covariates. A total of 368 pairs of 
SNPs were identified and showed statistically significant interaction 
with Aβ42 level. The interactive and main effects of the 368 significant 
SNP-SNP interaction pairs are shown in Fig. 1. All pairs of 368 SNP-SNP 
interactions shared common characteristics in that the interaction ef-
fects were much higher than the main effect. Significant SNP-SNP 
interaction was detected among the SNPs with marginal main effect. 

To further confirm the association of SNP-SNP interaction detected 
in this study, IBM SPSS 24.0 was used to calculate the variance explained 
by each identified SNP after controlling age, gender, and diagnosis as 
covariates. The variances were calculated for the additive and interac-
tion terms separately using 2 hierarchical linear regression models. The 
significance validation of SNP-SNP interaction was analyzed using the 
SPSS general linear model, and R-squared of the interaction and additive 
terms are shown in Fig. 2. 

The top 10 R-squared values of SNP-SNP interaction pairs are shown 
in Table 1. The interaction term was finally incorporated, which was 
used to compute additional variance. As shown in Table 1, for each 
identified SNP-SNP interaction pair, the variance proportion of the 
interaction term is much higher than that of the main effects. The 
highest percent was 6% after combined the interaction term of SNP1 
× SNP2 and main effect of SNP1 + SNP2. For example, the interaction 
term accounted for 5.6% of the variance, and the main effects accounted 
for 0.4% of the variance (6.0% combined) in rs6463343 (*SLC29A4)- 
rs4757417 (SOX6). As we expected, these interaction pairs all had 
marginal main effects but explained a relatively high-level variance of 
Aβ42. In addition, the previously reported AD risk genes were replicated 
in our study: NFIA, MYH9, CARD11, KCNA6, TRAM2, SCARB1, NIPS-
NAP3B, CDH9, and C8orf34, as shown in bold italics in Table 1. These 
results were obtained after searching through the Enrichr online tool. 
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Fig. 1. The 3D waterfall plot for interaction effects and main effects of each 
SNP with − log10 (p-values). The number of significant SNP-SNP pairs was 368. 
For each interaction pair, the orange waterfall represents main effects of SNP1; 
the purple waterfall represents main effects of SNP2; and the red waterfall 
represents the interaction effects of SNP1-SNP2 pairs. Abbreviations: SNP, sin-
gle-nucleotide polymorphism. 
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3.2. Functional enrichment analysis results 

The identified SNPs were mapped onto the genome by Homo sapiens 
genome assembly GRCh37 (hg19) to analyze further the biological sig-
nificance at the gene level. In total, 368 SNP-SNP pairs that included 567 
SNPs were mapped onto 103 gene-gene pairs (including 199 different 
genes). In addition, we found that 100 genes out of 199 genes were 
included in the items related to AD by searching in 2 gene set libraries of 
Enrichr: PhenGenI_Association_2021 and HDSigDB_Human_2021, which 
indicated that they were reported as AD-related genes. However, the 
other 99 genes have not been found in the items related to AD based on 
the gene set libraries of PhenGenI_Association_2021 and HDSigDB_Hu-
man_2021, which suggested that they were not yet reported as AD- 
related genes. In this study, the relationship between gene-gene pairs 
and AD was divided into 3 sets: set-I, set-II, and set-III, as shown in Fig. 3. 
In set-I, 2 genes in each pair are AD-related genes, and in set-II, only 1 
gene in each pair is an AD-related gene. The peculiar feature of set-III is 
that neither of the 2 genes in each pair is associated with AD. 

To further illustrate the correlation between the identified genes and 

AD, we performed gene set enrichment analyses using PhenGenI and 
DisGeNET databases. Using PhenGenI disease enrichment analysis, we 
found that the item of “Alzheimer disease” ranked in top 10. The top 8 
enriched PhenGenI pathways were cholesterol and high-density lipo-
protein, platelet function tests, echocardiography, electrocardiography, 
stroke, triglycerides, resistin, and Alzheimer disease, as shown in  
Fig. 4A. Intriguingly, the cholesterol and high-density lipoprotein 
pathway was reported to be directly related to AD (Puglielli et al., 2003; 
Shobab et al., 2005). Moreover, the top 4 enriched DisGeNET pathways 
were unipolar depression, schizophrenia (SZ), major depressive disor-
der, and Alzheimer disease and late onset, as shown in Fig. 4B. Using 
DisGeNET disease enrichment analysis, we found that the significant 
enrichment pathways include major psychiatric disorders such as uni-
polar depression, SZ, and major depressive disorder, as well as neuro-
degenerative disorder, such as Alzheimer disease. Noteworthy, 
depression and SZ are related to the occurrence and development of AD 
indirectly (Ashe et al., 2001; Ownby et al., 2006). Researchers have 
suggested that psychotic symptoms affect a sizable proportion of in-
dividuals with AD and persistent in AD patients (Ropacki and Jeste, 
2005). 

3.3. Protein-protein interaction network analysis 

To further interpret biological implications at the level of gene-gene 
interactions, all the 103 pairs of gene-gene interaction, which from set-I 
(Fig. 3A), set-II (Fig. 3B), and set-III (Fig. 3C) were used to analyze the 
PPI network. Based on the STRING tool, a PPI subnetwork with 10 genes 
and 17 interaction pairs was identified. The chord diagram was gener-
ated using the online server BioLadder (https://www.bioladder.cn/, 
accessed on December 18, 2022) to visualization the analysis of gene- 
gene interaction pairs. The different colored regions and colored 
curves in the chord diagram represent the genes and the interactions 
between 2 genes, respectively, as depicted in Fig. 5. The 10 genes were 
APP, MYH9, ITGB3, AUTS2, SORBS1, ITPR2, FMN2, SPHKAP, SH3BP4, 
and DLG2. As a result, 5 pairs overlapped with the PPI network in this 
study, as shown by the purple curves in Fig. 5, which were APP-ITPR2, 
MYH9-ITGB3, DLG2-SH3BP4, FMN2-SPHKA, and SORBS1-AUTS2, and 
their biological implications deserve further discussion. 
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Fig. 2. The 3D waterfall plot for interaction and additive terms with R square 
in the linear regression model. The red area represents the variance explained 
by the interaction term on Aβ42. The blue area represents the variance 
explained by the additive term on Aβ42. Abbreviations: SNP, single-nucleotide 
polymorphisms. 

Table 1 
Top10 R square of SNP-SNP interaction pairs  

No. SNP1 × SNP2 Gene CHR p-value Explained variance (R square) 

GWAS Interaction Age + gender + dxa SNP1 + SNP2
b SNP1 × SNP2

c  

1 rs6463343 dSLC29A4  7  0.352 1.15E− 09  0.149  0.004  0.056 
rs4757417 SOX6 11 0.428  

2 rs6686758 NFIA  1  0.723 1.48E− 09  0.149  0.003  0.052 
rs2718293 dSLC66A2P1 7 0.766  

3 rs1005570 MYH9  4  0.438 6.39E− 11  0.149  0.003  0.049 
rs12603582 ITGB3 18 0.542  

4 rs12531570 dCARD11  7  0.302 2.96E− 12  0.149  0.003  0.048 
rs11600150 dMRGPRX1 11 0.947  

5 rs1003564 dKCNA6  12  0.451 1.43E− 10  0.149  0.007  0.048 
rs12246684 CCDC172 10 0.624  

6 rs1003564 dKCNA6  12  0.451 1.64E− 10  0.149  0.007  0.047 
rs12244656 CCDC172 10 0.615  

7 rs2268731 TRAM2  6  0.876 8.52E− 11  0.149  0.001  0.046 
rs701106 SCARB1 12 0.821  

8 rs4683427 PLS1  3  0.098 9.07E− 11  0.149  0.008  0.046 
rs12552611 dNIPSNAP3B 9 0.121  

9 rs6870789 CDH9  5  0.505 2.84E− 10  0.149  0.005  0.046 
rs1434927 C8orf34 8 0.235  

10 rs1382932 CDH9  5  0.487 3.09E− 10  0.149  0.005  0.046 
rs1434927 C8orf34 8 0.235 

Key: GWAS, genome-wide association studies; SNP, single-nucleotide polymorphisms. 
a Age + gender + dx: percent variance in Aβ42 levels explained by age, gender, and dx. 
b SNP1 + SNP2: percent additional variance in Aβ42 levels explained by the combined main effect of SNP1 and SNP2 after accounting for age, gender, and dx. 
c SNP1 × SNP2: percent additional variance in Aβ42 levels explained by the interaction effect of SNP1 and SNP2 after accounting for age, gender, dx, SNP1, and SNP2. 
d Nearest gene proximal to SNP. 
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In addition, the 5 gene pairs were mapped by 6 SNP-SNP interaction 
pairs: rs11576138-rs6760875, rs1005570-rs12603582, rs12698823- 
rs12247017, rs440666-rs1386810, rs440666-rs4964017, and 
rs6738858-rs12291567. The mean Aβ42 is plotted against each pairwise 
genotype combination of 6 SNP pairs with significant genome-wide 
interaction, as shown in Fig. 6. The colored bars in Fig. 6 represent 
pairwise genotype combinations of SNP1-SNP2 interactions. The results 
showed that different genotype combinations may be contribute to the 
phenotypic changes, thereby increasing the risk of incident AD. 

4. Discussion 

From 60% to 80% of AD risk is reported to be associated with ge-
netics. Although GWAS for AD have identified multiple SNPs in genes 
associated with AD risk, the problem of “missing heritability” in AD 
remains serious (Zajac et al., 2023). Epistasis has been considered a 
prime cause of “missing heritability” in AD in recent years. To study such 
complex diseases, it is necessary to detect epistasis to unraveling the 
underlying relationship between genotypes and AD-related phenotypes. 
Therefore, this study focused on identifying epistasis between 2-marker 
interactions at marginal main effects across the whole genome. To our 
knowledge, this genome-wide study is a highly comprehensive epistatic 
detection of QT at the Aβ42 level. A total of 368 SNP pairs were found to 
be statistically significant. 

At the level of SNP-SNP interaction, all 368 SNP-SNP pairs showed 
statistical significance, and highly significant SNP-SNP interactions were 
detected between SNPs with marginal main effect. In particular, the 
interaction effects were much higher than the main effects (Fig. 1). As 
we expected, all identified interaction pairs explained a relatively high- 
level variance at the Aβ42 level (Fig. 2 and Table 1), which could be 
helpful for explaining some part of the “missing heritability” of AD. 

After gene source annotation using the online tool Enrichr, 103 gene 
pairs (including 199 different genes) were divided into 3 sets according 
to the relationship of gene-gene pair with AD. Among 199 different 
genes, 100 were AD-related, and 99 were not confirmed as AD-related. 
The results are more abundant than those of our previous GWAS (Li 

et al., 2017) and have higher correlation and replication rates. Most of 
the identified genes were enriched in AD or AD-related diseases. 
Therefore, our results can efficiently identify AD-related genes and po-
tential genes implicated in AD. 

At the level of gene-gene interaction, 82 gene-gene interaction pairs, 
including those from set-I (Fig. 3A) and set-II (Fig. 3B), were used to 
perform PPI network analysis using the STRING database. Analysis of 
PPI networks is being increasingly recognized as an effective way to 
obtain biologically meaningful explanations, which helps in character-
izing the underlying biology of genes associated with complex diseases 
(Safari-Alighiarloo et al., 2014). Therefore, this study performed PPI 
network analysis utilizing the online search tool STRING. As shown in 
Fig. 5, the PPI subnetwork containing 10 genes and 17 gene-gene in-
teractions was identified. As a result, 5 gene-gene interaction pairs 
overlapped with the PPI network and need further discussion. 

Amyloid precursor protein (APP) originates from Aβ that is a major 
component of extracellular plaques found in AD brains. Aβ aggregation 
leading to amyloid plaque deposition is the main pathological feature of 
AD, and APP increases the possibility of Aβ aggregation and early onset 
AD (Bharadwaj et al., 2009; Dorostkar et al., 2015). APP promotes 
synaptic activity, and the formation of synapses and dendritic spines, 
and plays a pivotal role in memory and learning (Rajmohan and Reddy, 
2017). The accumulation of C-terminal fragments of APP causes synaptic 
failure and memory impairment, which is a possible cause of AD 
(Kametani and Hasegawa, 2018). Inositol 1,4,5-trisphosphate receptor 
type 2 (ITPR2) is a protein-coding gene, which has been shown to be 
associated with AD risk. Astrocytes regulate synapse elimination 
through an ITPR2-dependent manner (Yang et al., 2016), and increased 
expression of ITPR2 could lead to neuronal calcium toxicity and cell 
death (Mencer et al., 2021). Therefore, APP-ITPR2 interaction might 
induce synaptic damage in AD neurons and may be related to synapse 
elimination. Furthermore, synaptic damage and loss are fundamental to 
the pathophysiology of AD and are also a key change in the synapse 
during AD progression, which leads to reduced cognitive function (John 
and Reddy, 2021; the Synaptic Health Endpoints Working Group et al., 
2020). 
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Fig. 3. Three sets of relationship between a gene-gene interaction pair and AD based on the Enrichr: (A) Set-I of the first relationship includes 20 pairs of gene-gene 
interaction and 40 different genes; both genes in each pair are AD related; (B) set-II of the second relationship includes 62 pairs of gene-gene interaction and 122 
different genes; only 1 gene in each pair is AD-related; (C) set-III of the third relationship includes 21 pairs of gene-gene interaction and 39 different genes; none in 
each pair is associated with AD. The red spots represent previously reported AD-related genes. Genes represented by blue spots have not been reported association 
with AD. Among them, there are 2 or even more than 2 lines between the 2 spots, which represents more than 1 pair of SNP mapping on the same pair of genes. The 
gene pairs highlighted in yellow represent the identified 5 pairs of gene-gene interaction that overlapped with the PPI network in this study. Abbreviations: AD, 
Alzheimer’s disease. 
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Myosin Heavy Chain 9 (MYH9) is a previously reported gene corre-
lated with AD risk. Acting as a regulator of actin cytoskeleton, MYH9 
interacts with actin and participates in various biological processes. 
MYH9 expression is decreased in NFTs accumulated by tau, while tau 
functions have been suggested to be downstream of Aβ in the hypothesis 
of amyloid plaques and tau tangles (Hondius et al., 2021; John and 
Reddy, 2021; Smith et al., 2019). Integrin alpha-V/beta-3 (ITGB3) gene 
is a susceptibility region for AD. Integrins play an important role in 
maintaining and modulating neuronal synaptic activity (Sethi and Zaia, 
2017). Moreover, the number of dendritic spines is related to actin, and 
dendritic spines are the major site of synapse formation among neurons 
(Bosch and Hayashi, 2012). Based on the above analysis, MYH9-ITGB3 
interaction might be related to the modulation of synaptic activity and 
may be helpful for the development of the nervous system. 

Disks large homolog 2 (DLG2) is a novel AD-associated gene involved 
in regulating synaptic stability and part of the postsynaptic protein 
scaffold of excitatory synapses. Downregulation of synaptic scaffolding 
proteins has been described as an early event in AD. Reduced expression 
of DLG2 has been noticed in AD patients (Prokopenko et al., 2022). 
Moreover, DLG2, also known as postsynaptic density protein 93 
(PSD93), attenuates amyloid-β-mediated cognitive dysfunction by pro-
moting the catabolism of Aβ (Yu et al., 2017). SH3 domain-binding 
protein 4 (SH3BP4) is involved in lectin-mediated endocytosis 
controlled by cargo. Lectin-mediated endocytosis is an indispensable 
step in cellular regulation, and endocytosis plays a direct role in the 
processing of APP. Reduced synaptic accumulation of Aβ may reduce 
synaptic loss and enhance cognitive function in AD patients (Smith et al., 
2019). Therefore, DLG2-SH3BP4 interaction may correlate with synaptic 
and cognitive functions during AD progression. 

Formin-2 (FMN2) has been implicated in regulating actin dynamics. 
FMN2 is deregulated in patients with AD, and chronically reduced levels 
of FMN2 accelerate age-related memory decline. Lack of FMN2 could 
result in a corresponding impairment in synaptic plasticity in young 
mice (Agís-Balboa et al., 2017). The sphingosine kinase 1 interactor, 
AKAP domain containing (SPHKAP) is a protein-coding gene. Neurons in 
the brains of patients with AD show a decrease in sphingosine kinase 1, 
which could lead to defects in microglial phagocytosis and dysfunctional 
resolution of inflammation. Neuroinflammation has also been proposed 
to provide a link between early Aβ pathology and subsequent NFT for-
mation. Moreover, AD-related inflammatory signals can modify the 
ramified morphology of microglia, thereby resulting in synaptic loss and 
dysfunction (Piccioni et al., 2021). Overall, FMN2-SPHKAP interaction 
might play a critical role in inducing synaptic loss and dysfunction or 
may be related to neuroinflammation, thereby leading to memory 
decline and cognitive impairment. 

SORBS1 expression is upregulated in the hippocampus of individuals 

Fig. 4. Bubble plot presentation of enriched PhenGenI Association 2021 
enrichment and DisGeNET enrichment ranked according to adjusted p-values. 
(A) Enriched PhenGenI terms ranked top 10 according to adjusted p-values. (B) 
Enriched DisGeNET terms ranked top 10 according to adjusted p-values. 
Numbers of genes contributing to each term are displayed as dots. 

Fig. 5. Chord diagram of the protein-protein interaction (PPI) subnetwork 
(with 10 genes and 17 interactions) generated by BioLadder and STRING. The 
purple curves represent the 5-overlapping gene-gene pairs in the PPI network. 
The thickness of the curves represents the combined score of evidence that 
suggesting a functional link in PPI network: the thicker the curves is, the more 
important this connection is. Abbreviations: APP, amyloid precursor protein; 
AUTS2, autism susceptibility candidate 2; DLG2, disks large homolog 2; FMN2, 
formin-2; ITGB3, integrin alpha-V/beta-3; ITPR2, inositol 1,4,5-trisphosphate 
receptor type; MYH9, myosin heavy chain 9. 
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suffering from AD (Starnawska et al., 2017), and the effect of down-
regulation of SORBS1 may modify the risk of AD through an 
Aβ-dependent mechanism (Wang et al., 2006). Autism susceptibility 
candidate 2 (AUTS2) is associated with multiple neurological diseases 
and is expressed in the central nervous system (Yin et al., 2022). AUTS2 
has been reported as a synapse-regulatory gene for proper synaptic in-
puts and social communication (Hori et al., 2020). AUTS2 regulates the 
actin cytoskeleton to control neuronal migration and neuritogenesis 
(Hori et al., 2014; Hori and Hoshino, 2017). Synapses are key sites of 
early pathogenesis in AD, and soluble oligomers of Aβ play a critical role 
in early AD process. Furthermore, most excitatory synapses in the brain 
rely on dendritic spines as sites for excitatory neurotransmission, and 
cellular pathways acting on the actin cytoskeleton dynamically regulate 
the structure and function of dendritic spines (Penzes and VanLeeuwen, 
2011). Therefore, SORBS1-AUTS2 interaction might be related to 
regulating actin cytoskeleton and inactivating neuron migration, lead-
ing to neuronal aging and cognitive decline in AD. 

In summary, 4 pairs of gene-gene interactions might be related to 
synapse and synaptic activity: APP-ITPR2, MYH9-ITGB3, DLG2-SH3BP4, 
and FMN2-SPHKAP. SORBS1-AUTS2 interaction might be related to 

regulating actin cytoskeleton and inactivating neuron migration, which 
is indirectly associated with the amyloid cascade hypothesis of AD. Since 
synaptic damage and loss are fundamental to the pathology of AD and an 
early event in the AD process owing to soluble Aβ, these results are 
consistent with the analysis of epistatic effects in our study and further 
support the notion that CSF Aβ42 contributes to the detection of potential 
risk variation associated with it. Moreover, this study also performed PPI 
network analysis on other 12 pairs of nonoverlapping gene-gene inter-
action in the PPI subnetwork. The current findings suggest that most of 
these 12 gene-gene interaction pairs might be related to promoting the 
catabolism of Aβ (as reported for APP-DLG2 interaction) (Yu et al., 
2017), mediating axon elongation (as reported for APP-MYH9 interac-
tion) (Javier-Torrent et al., 2019), upregulating reactive microglia in AD 
(as reported for APP-ITGB3 interaction) (Neher et al., 2012), remodeling 
the architecture of actin cytoskeleton (as reported for FMN2-MYH9 
interaction) (Kim et al., 2016), and extracellular vesicles (as reported for 
FMN2-SORBS1 interaction) (Muraoka et al., 2021). To our knowledge, 
these interactions are indirectly associated with synaptic activity, 
leading to Aβ-mediated cognitive dysfunction, which in turn supports 
the results of this study. Therefore, the identified subnetwork might 

Fig. 6. Pairwise genotype combination chart of the Aβ42 value based on 6 pairs of significant genome-wide SNP-SNP interaction effects. The standard deviation is 
shown as error bars. The y-axis represents the value of Aβ42 and the x-axis represents the pairwise genotype combinations of SNP1-SNP2 interactions. Three colors of 
“green,” “blue,” and “orange” represent 3 genotypes (AA, Aa, aa) of each single-nucleotide polymorphism, which are numerically represented as (0,1,2), respec-
tively. Abbreviations: APP, amyloid precursor protein; AUTS2, autism susceptibility candidate 2; DLG2, disks large homolog 2; FMN2, formin-2; ITGB3, integrin 
alpha-V/beta-3; ITPR2, inositol 1,4,5-trisphosphate receptor type; MYH9, myosin heavy chain 9; SH3BP4, SH3 domain-binding protein 4. 
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induce synapse loss, damage, dysfunction, and synaptic activity or 
regulate the actin cytoskeleton, mediate axon elongation, and upregu-
late microglia in AD, which warrants further investigation. 

5. Conclusion 

In this study, a linear regression framework was used to perform 
SNP-SNP interaction detection across the whole genome. Also, we used 
an efficiently parallel computing approaches based on multi-GPU to 
solve the issue of the computation burden of searching for all SNP-SNP 
interaction pairs. Because of the higher sensitivity of CSF Aβ42, more 
statistically significant results were found which allow for a more 
comprehensive understanding and detecting of potential risk variants 
both associated with Aβ42. To control for any factors outside of genetics 
that may influence AD and identify potential genetic epistasis that 
implicated in AD, age, gender, and diagnosis were included in the linear 
regression models as covariate terms. As expected, the identified 368 
statistically significant SNP-SNP interaction pairs explained a relatively 
high-level variance of Aβ42, while their main effects are marginal. In 
particular, a total of 100 previously reported AD related were replicated, 
and 5 gene-gene interaction pairs were found to be overlapped with the 
PPI network. The replicated gene-gene pairs can provide useful clues to 
the aspect of inducing synaptic loss and dysfunction or other synaptic 
activity. Our results might have predictive potential on leading to 
memory decline and cognitive impairment in AD-affected brains. 
Moreover, the analyses of the identified subnetwork provided further 
evidence that epistasis interactions between 10 genes (APP, MYH9, 
ITGB3, AUTS2, SORBS1, ITPR2, FMN2, SPHKAP, SH3BP4, and DLG2) 
that we obtained were important for partially explaining the “missing 
heritability” of AD. While we have provided exhaust detection of 
approximately 159 million SNP-SNP pairs in our study, further advances 
in both computing power and algorithm efficiency will allow for the 
cross validation in other large and independent datasets in the future. 
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behalf of Alzheimer’s Disease Neuroimaging Initiative, 2022. Mitochondrial genetics 
reinforces multiple layers of interaction in Alzheimer’s disease. Biomedicines 10 (4), 
880. https://doi.org/10.3390/biomedicines10040880. 

Chen, Y., Xu, F., Pian, C., Xu, M., Kong, L., Fang, J., Li, Z., Zhang, L., 2021. EpiMOGA: an 
epistasis detection method based on a multi-objective genetic algorithm. Genes 12 
(2), 191. https://doi.org/10.3390/genes12020191. 

Congdon, E.E., Sigurdsson, E.M., 2018. Tau-targeting therapies for Alzheimer disease. 
Nat. Rev. Neurol. 14 (7), 399–415. https://doi.org/10.1038/s41582-018-0013-z. 

Dorostkar, M.M., Zou, C., Blazquez-Llorca, L., Herms, J., 2015. Analyzing dendritic spine 
pathology in Alzheimer’s disease: problems and opportunities. Acta Neuropathol. 
130 (1), 1–19. https://doi.org/10.1007/s00401-015-1449-5. 

Elman, J.A., Panizzon, M.S., Gustavson, D.E., Franz, C.E., Sanderson-Cimino, M.E., 
Lyons, M.J., Kremen, W.S., 2020. Amyloid-β positivity predicts cognitive decline but 
cognition predicts progression to amyloid-β positivity. Biol. Psychiatry 87 (9), 
819–828. https://doi.org/10.1016/j.biopsych.2019.12.021. 

Hassan, Q., Kerman, K., 2019. Electrochemical approaches for the detection of amyloid- 
β, tau, and α-synuclein. Curr. Opin. Electrochem. 14, 89–95. https://doi.org/ 
10.1016/j.coelec.2018.12.009. 

He, B., Wang, L., Xu, B., Zhang, Y., 2021. Association between CSF Aβ42 and amyloid 
negativity in patients with different stage mild cognitive impairment. Neurosci. Lett. 
754, 135765 https://doi.org/10.1016/j.neulet.2021.135765. 

J. Li et al.                                                                                                                                                                                                                                         

http://adni.loni.usc.edu/
http://www.editage.com
http://www.editage.com
https://doi.org/10.1016/j.neurobiolaging.2023.10.003
https://doi.org/10.1016/j.genrep.2022.101673
https://doi.org/10.1016/j.asej.2022.101986
https://doi.org/10.1016/j.imu.2022.101083
https://doi.org/10.15252/embj.201796821
https://doi.org/10.3390/genes13040664
https://doi.org/10.3390/genes13040664
http://refhub.elsevier.com/S0197-4580(23)00240-3/sbref6
http://refhub.elsevier.com/S0197-4580(23)00240-3/sbref6
https://doi.org/10.1016/S0278-5846(01)00159-2
https://doi.org/10.1111/j.1582-4934.2009.00609.x
https://doi.org/10.1007/s11065-008-9054-1
https://doi.org/10.1007/s11065-008-9054-1
https://doi.org/10.1016/j.conb.2011.09.002
https://doi.org/10.3390/biomedicines10040880
https://doi.org/10.3390/genes12020191
https://doi.org/10.1038/s41582-018-0013-z
https://doi.org/10.1007/s00401-015-1449-5
https://doi.org/10.1016/j.biopsych.2019.12.021
https://doi.org/10.1016/j.coelec.2018.12.009
https://doi.org/10.1016/j.coelec.2018.12.009
https://doi.org/10.1016/j.neulet.2021.135765


Neurobiology of Aging 134 (2024) 84–93

92

Hibar, D.P., Stein, J.L., Jahanshad, N., Kohannim, O., Hua, X., Toga, A.W., McMahon, K. 
L., de Zubicaray, G.I., Martin, N.G., Wright, M.J., Weiner, M.W., 2015. Genome-wide 
interaction analysis reveals replicated epistatic effects on brain structure. Neurobiol. 
Aging 36, S151–S158. https://doi.org/10.1016/j.neurobiolaging.2014.02.033. 

Hohman, T.J., Koran, M.E., Thornton-Wells, T., Alzheimer’s Neuroimaging Initiative, 
2013. Epistatic genetic effects among Alzheimer’s candidate genes. PLoS One 8 (11), 
e80839. https://doi.org/10.1371/journal.pone.0080839. 

Hondius, D.C., Koopmans, F., Leistner, C., Pita-Illobre, D., Peferoen-Baert, R.M., 
Marbus, F., Paliukhovich, I., Li, K.W., Rozemuller, A.J., Hoozemans, J.J., Smit, A.B., 
2021. The proteome of granulovacuolar degeneration and neurofibrillary tangles in 
Alzheimer’s disease. In: Acta Neuropathol., pp. 341–358. https://doi.org/10.1007/ 
s00401-020-02261-4. 

Hori, K., Hoshino, M., 2017. Neuronal migration and AUTS2 syndrome. Brain Sci. 7 (5), 
54. https://doi.org/10.3390/brainsci7050054. 

Hori, K., Nagai, T., Shan, W., Sakamoto, A., Taya, S., Hashimoto, R., Hayashi, T., Abe, M., 
Yamazaki, M., Nakao, K., Nishioka, T., 2014. Cytoskeletal regulation by AUTS2 in 
neuronal migration and neuritogenesis. Cell Rep. 9 (6), 2166–2179. https://doi.org/ 
10.1016/j.celrep.2014.11.045. 

Hori, K., Yamashiro, K., Nagai, T., Shan, W., Egusa, S.F., Shimaoka, K., Kuniishi, H., 
Sekiguchi, M., Go, Y., Tatsumoto, S., Yamada, M., 2020. AUTS2 regulation of 
synapses for proper synaptic inputs and social communication. iScience 23 (6), 
101183. https://doi.org/10.1016/j.isci.2020.101183. 

Hu, Y., Zhang, H., Liu, B., Gao, S., Wang, T., Han, Z., , International Genomics of 
Alzheimer’s Project (IGAP), Ji, X., Liu, G., 2020. Rs34331204 regulates TSPAN13 
expression and contributes to Alzheimer’s disease with sex differences. e95–e95 
Brain 143 (11). https://doi.org/10.1093/brain/awaa302. 

Islam, M.B., Chowdhury, U.N., Nashiry, M.A., Moni, M.A., 2022. Severity of COVID-19 
patients with coexistence of asthma and vitamin D deficiency. Inform. Med. 
Unlocked 34, 101116. https://doi.org/10.1016/j.imu.2022.101116. 

Jansen, I.E., Savage, J.E., Watanabe, K., Bryois, J., Williams, D.M., Steinberg, S., 
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